

Materials and Methods Introduction **Stimuli :** 400 disyllabic nouns, degraded by noise-vocoded speech. Up to now, no event-related potentials component can be considered as an indicator of successful lexical access during speech **Participants :** 12 (9 female), naïve towards noise-vocoded speech. **Experimental design :** Experiment split into three phases: recognition. \Rightarrow what about oscillatory activity ? The induced activities could 2. Perceptual learning 1. Test reflect a non-phase-locked comprehension process. In previous studies, gamma-band synchronisations have been \sim shown to be involved in perception of coherent objects in the visual modality (Tallon-Baudry et al., 1998). Furthermore the comprehension of degraded speech seems to be associated with a pattern "alpha decrease / gamma burst" (Obleser & Weisz, 2011 ; Hannemann et al., 2007). 250 degraded words. 150 other stimuli, each Our aim : identify time-frequency areas in the oscillatory cortical For each stimuli : followed by a double activity that are correlated with the intelligibility of degraded speech. - Rate its intelligibility feedback (clear then (from 0 to 3) distorted word). - Repeat if possible Participants listens carefully. \Rightarrow Stimuli mostly unintelligible **Noise-vocoding Data acquisition and analysis :** EEG recording from 32 active electrodes (Biosemi, ActiveTwo system). Speech signal degradation Trial length : 1 second after stimulus onset. Baseline from -200 to 0 ms. Deletes a major part of the spectral cues (prosody, formantic Compute discrete Morlet-wavelet transform, then ERSP (comparison structure) but preserves temporal envelopes between Test and Re-test) in order to analyze oscillatory activities Allows perceptual learning (phase-locked and non-phase-locked) from 1 to 140 Hz. Bibliography

Oscillatory cortical activity and intelligibility of degraded speech

Léo Varnet, Fanny Meunier, Michel Hoen Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR 5292, France leo.varnet@isc.cnrs.fr

Tallon-Baudry C., Bertrand O., Peronnet F., Pernier J. (1998). Oscillatory γ -Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans. Journal of Neuroscience, 18, 4244-4254.

Obleser, J. & Weisz, N. (2011). Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. Cerebral Cortex.

Hannemann, R., Obleser, J., Eulitz, C. (2007). Top-down knowledge supports the retrieval of lexical information from degraded speech. Brain Research, 1153, 134-143

gamma oscillatory activity for unintelligible stimuli. process.

bands.

Acknowledgements :

This research was supported by a European Research Council grant to the SpiN project (n° 209234).

- access. Supports a distributed model of speech comprehension. - Alpha cluster (8-13 Hz, 0.2-0.7 s) : Inhibition mechanism of local - Anticipatory gamma cluster (35-140 Hz, before 0 s) : attentional
- **Conclusion :** These preliminary results suggest that an oscillatory signature of intelligibility could be found either in alpha- or gamma-
- Further studies need to be carried out to confirm these findings and clarify the functional role of each oscillatory activity type.